Higher-Order Petri Net Models Based on Artificial Neural Networks

نویسندگان

  • Tommy W. S. Chow
  • Jin-Yan Li
چکیده

In this paper, the properties of higher-order neural networks are exploited in a new class of Petri nets, called higher-order Petri nets (HOPN). Using the similarities between neural networks and Petri nets this paper demonstrates how the McCullock-Pitts models and the higher-order neural networks can be represented by Petri nets. A 5-tuple HOPN is defined, a theorem on the relationship between the potential firability of the goal transition and the T-invariant (HOPN) is proved and discussed. The proposed HOPN can be applied to the polynomial clause subset of first-order predicate logic. A five-clause polynomial logic program example is also included to illustrate the theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Petri nets design based on neural networks

Petri net faulty models are useful for reliability analysis and fault diagnosis of discrete event systems. Such models are difficult to work out as long as they must be computed according to alarm propagation. This paper deals with Petri net models synthesis and identification based on neural network approaches, with regard to event propagation and to state propagation dataset. A learning neura...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes

In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 92  شماره 

صفحات  -

تاریخ انتشار 1997